Other services related to testing

3D Microvascularized Tissue Models by Laser-Based Cavitation Molding of Collagen

3D tissue models recapitulating human physiology are important for fundamental biomedical research, and they hold promise to become a new tool in drug development. An integrated and defined microvasculature in 3D tissue models is necessary for optimal cell functions. However, conventional bioprinting only allows the fabrication of hydrogel scaffolds containing vessel-like structures with large diameters (>100 µm) and simple geometries. Recent developments in laser photoablation enable the generation of this type of structure with higher resolution and complexity, but the photo-thermal process can compromise cell viability and hydrogel integrity.

To address these limitations, the present work reports in situ 3D patterning of collagen hydrogels by femtosecond laser irradiation to create channels and cavities with diameters ranging from 20 to 60 µm. In this process, laser irradiation of the hydrogel generates cavitation gas bubbles that rearrange the collagen fibers, thereby creating stable microchannels. Such 3D channels can be formed in cell- and organoid-laden hydrogel without affecting the viability outside the lumen and can enable the formation of artificial microvasculature by the culture of endothelial cells and cell media perfusion. Thus, this method enables organs-on-a-chip and 3D tissue models featuring complex microvasculature.

Read more…

By Alessandro Enrico,Dimitrios Voulgaris,Rebecca Östmans,Naveen Sundaravadivel,Lucille Moutaux,Aurélie Cordier,Frank Niklaus,Anna Herland,Göran Stemme
– 14 January 2022

Recent Posts

“We Are Testing by Skinobs” at the 2024 ISBS Congress, 4-6 June 2024

  Less than a month after NYSCC Supplier's Day, Skinobs is thrilled to announce that…

Skin Deep: The Potential of Microbiome Cosmetics via Springer

The interplay between the skin microbiome and its host is a complex facet of dermatological…

Chinese researchers Identify IGF2 in Oral Mucosa as Key Factor for ‘Scarless Wound Healing via Cosmetics Design Asia

A group of researchers from China have identified Insulin-like Growth Factor 2 (IGF2) in oral…