It is well known that the presence of mechanical cues is of significant importance in developmental biology. The extracellular forces that the cells experience in space where gravity is negligible compared to the earth differ from their natural condition. This change in the gravitational field and thus the extracellular mechanical forces can affect the cellular mechanisms. For this week’s research highlight, we have selected a microfluidic platform that allows studying cell behaviour under disrupted gravity. In an article recently published in npj Microgravity, a research team reported a microfluidic device called microgravity-on-a-chip (MOC) that facilitates microgravity experiments. The proposed microfluidic platform was shown to be capable of handling a variety of biological assays such as proliferation, viability, morphology, protein expression and imaging of molecular structures in a microgravity environment.
This article aims to alert the medical community and public health authorities to accumulating evidence…
This article is about the neural conundrum behind the slowness of human behavior. The information…
We live in a world where we slather ourselves in more anti-aging creams than a…