Recently, the introduction of surface acoustic wave (SAW) technique for microfluidics has drawn a lot of attention. The pattern and mutual communication in cell layers, tissues, and organs play a critical role in tissue homeostasis and regeneration and may contribute to disease occurrence and progression. Tissue engineering aims to repair and regenerate damaged organs, depending on biomimetic scaffolds and advanced fabrication technology.
However, traditional bioengineering synthesis approaches are time-consuming, heterogeneous, and unmanageable. It is hard to pattern cells in scaffolds effectively with no impact on cell viability and function. Here, we summarize a biocompatible, easily available, label-free, and non-invasive tool, surface acoustic wave (SAW) technique, which is getting a lot of attention in tissue engineering. SAW technique can realize accurate sorting, manipulation, and cells’ pattern and rapid formation of spheroids.
By integrating several SAW devices onto lab-on-a-chip platforms, tissue engineering lab-on-a-chip system was proposed. To the best of our knowledge, this is the first report to summarize the application of this novel technique in the field of tissue engineering.
Deming Jiang, Jingwen Liu, Yuxiang Pan, Liujing Zhuang & Ping Wang – Cell and Tissue Research (2021)
The human vaginal mucosa is comprised of a protective multilayered epithelium with a squamous, stratified…
Veganism is no longer just a dietary choice; it’s a full lifestyle movement that influences…
The European Commission (EC) is hosting a free, one-hour webinar, “When Beauty Meets Green: The…